RAID-Z

Adam Leventhal, Delphix
RAID-Z: RAID-5 For ZFS

Adam Leventhal, Delphix
RAID-Z: RAID-5 For ZFS

(Sort of)

Adam Leventhal, Delphix
Everything you could possibly want to know about RAID-Z and probably quite a bit more if you’ll indulge me.

Adam Leventhal, Delphix
Everything you always wanted to know about RAID-Z*

*But were afraid to ask

Adam Leventhal, Delphix
What Is RAID?

- Redundant Array of Inexpensive Disks
 or
- Redundant Array of Independent Disks

- Coined in 1988
 - Descriptive rather than prescriptive
 - Changed when “inexpensive” became too hilarious
Several Different RAID Levels

RAID-0 striping (no actual redundancy)
RAID-1 mirroring

RAID-4 multiple blocks in a stripe share a parity block
RAID-5 same as RAID-4, but parity is rotated between disks
RAID-6 same as RAID-5, but with double parity
Several Different RAID Levels

RAID-0 striping (no actual redundancy)
RAID-1 mirroring
RAID-2 DRAM-style ECC (K data disks + log(K) parity disks)
RAID-3 blocks are carved up and written to multiple disks in a parity-protected stripe
RAID-4 multiple blocks in a stripe share a parity block
RAID-5 same as RAID-4, but parity is rotated between disks
RAID-6 same as RAID-5, but with double parity
RAID-7.N RAID with N parity disks
RAID-7 generalized M+N RAID
Why RAID-Z?

- Software RAID-5 stinks
- “RAID-5 write hole” when rewriting a stripe:
 - Read existing parity
 - Write new data
 - Write updated parity
- Special hardware required: NV-DRAM
- Software RAID-5 is slow or unsafe
- ZFS is designed to need no special hardware
What is RAID-Z?

• No in-place modifications
• Variable-width stripes / full-stripe writes
• Distributed parity like RAID-5
• Three flavors
RAID-Z Idiosyncrasies

- Space accounting
- Skipped sectors v. performance
- Resilvering
- Random IOPS
Space Accounting

- Disks are divided into sectors
- Columns represent different disks
- Rows represent different sectors
Space Accounting

• Write:
Space Accounting

• Free:
Space Accounting

• Free:

• Write:
Space Accounting

• Free:

• Write:

• This sector is “free”, but can never be used
Space Accounting

• Solution: round up to nearest (nparity + 1) and skip unused sectors

• Skipped sectors ensure there are never free sectors that can never be used
Space Accounting

- Solution: round up to nearest \((\text{nparity} + 1)\) and skip unused sectors
- Skipped sectors ensure there are never free sectors that can never be used
Space Accounting

• Skipped sectors are important so that we don’t “lose” space

• Variable width stripes are needed to avoid the RAID-5 write hole
 – How many parity blocks per row?

• $4 + 1$ RAID-Z x 1T HDD = ???

• Well, that depends on how you write
Skipped Sectors v. Performance

- Skipped sectors for space accounting create a new problem
- Data on an individual disk looks like this:

 ![Colorful Bar Chart]

- Reads and writes are small (random v. stream)
- Impedes ZFS IO aggregation
Skipped Sectors v. Performance

• Reads: just read more than we needed if it helps create big, contiguous chunks
 – “mind the gap”

• Writes: a little trickier
 – Can’t just overwrite – those sectors might be in use!
 – But we know when we skip a sector
 – Generate *optional IOs* to aid aggregation
Skipped Sectors v. Performance

Sun Storage 7410, 48 x 1T 7200 RPM SATA (2009)
Multi-threaded streaming write workload (MB/s)
Resilvering

• Traditional RAID: blithely XOR drives together
• RAID-Z: walk metadata to discover layout

• Pros: don’t have to touch free sectors
great for less-full storage pools
• Cons: many random IOPS to read metadata
 $O(\text{total metadata})$ not $O(\text{data to resilver})$
Random IOPS

- RAID-3 spread a block between disks
 - Each read or write touches all disks in a stripe
- RAID-4 improved upon RAID-3
 - Writing a block modifies one disk, updates parity
 - Reading a block accesses just one disk
- RAID-Z is closer to RAID-3 than to RAID-4
- For stripe width N, a RAID-Z stripe has $1/N$ as many IOPS as RAID-5
Do Random IOPS Matter?

2001
200 IOPS
Do Random IOPS Matter?

2001
200 IOPS

2010
35,000 IOPS
Flash and NV Storage

• Flash has many many more random read IOPS
• ... but we move to flash because we want to use them, not waste them!
• ... but can we take advantage of many IOPS x many SSDs?
• ... and how does the L2ARC change the random IOPS load on our disks?
Summing Up

• RAID-Z is not exactly RAID-5 (or RAID-6)
• Some gotchas to keep in mind when deploying RAID-Z or analyzing performance
• Flash may change the picture for you

• Would ubiquitous flash or NV-DRAM eliminate the need for RAID-Z?
Questions?

Links:
http://blogs.sun.com/bonwick/entry/raid_z
http://dtrace.org/blogs/ahl/2006/06/18/double-parity-raid-z
http://dtrace.org/blogs/ahl/2009/12/21/acm_triple_parity_raid/
http://blogs.sun.com/bonwick/entry/space_maps
http://dtrace.org/blogs/ahl/2010/07/21/what-is-raid-z
http://queue.acm.org/detail.cfm?id=1317400

Adam Leventhal, Delphix
ahl@delphix.com
twitter: @ahl
blog: dtrace.org/blogs/ahl