The Failure of SSDs
How Integration into the Storage Hierarchy Will Advise SSD Design

Adam Leventhal
Senior Staff Engineer
Sun Microsystems / Fishworks
Who Am I?

• Engineer in Sun's Fishworks group
• Project to deliver unified storage
• Integrate existing components
 > Solaris, DTrace, FMA, SMF
 > x64 platforms
 > CIFS, NFS, iSCSI
 > ZFS
ZFS

- Complete storage system
- Incorporates volume manager and filesystem
- Obviates the need for hardware RAID controllers
- Designed to turn commodity parts into enterprise-class storage
- Problem: commodity HDDs are really slow
Flash SSDs

- Disks: $/GB, W/GB, $/MB/s
- SSDs: $/IOPS, W/IOPS
- Use flash to accelerate ZFS
Hybrid Storage Pool (HSP)

- Adapted ZFS to integrate flash
- ZFS intent-log (ZIL) device
 > Accelerate small, synchronous writes
- Second Level Adaptive Replacement Cache (L2ARC)
 > Larger caching tier than ARC (DRAM)
 > “Evict-ahed” cache
 > Accelerate reads
HSP Needs

• ZIL: Logzilla
 > Writes: low-latency / high-IOPS
 > Reads: not performance critical
 > Low capacity needs (8GB or more)

• L2ARC: Readzilla
 > Reads: low-latency / high-IOPS
 > Writes: just don't get in way of reads, please
 > High capacity / low $/GB

• No perfect SSD, but several close enough
HSP Results (1/2)

Configuration A:
(7) 146GB 10,000 RPM SAS Drives

Configuration B:
(5) 400GB 4200 RPM SATA Drives
(1) 32G SSD ZIL Device
(1) 80G SSD Cache Device

4 Xeon 7350 Processors (16 cores)
32GB FB DDR2 ECC DRAM
OpenSolaris with ZFS
HSP Results (2/2)

- Hybrid Storage Pool (DRAM + Read SSD + Write SSD + 5x 4200 RPM SATA)
- Traditional Storage Pool (DRAM + 7x 10K RPM 2.5”)

<table>
<thead>
<tr>
<th>Category</th>
<th>Hybrid Storage Pool</th>
<th>Traditional Storage Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read IOPs</td>
<td>3.2x</td>
<td>11%</td>
</tr>
<tr>
<td>Write IOPs</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Storage Power (Watts)</td>
<td>4.9x</td>
<td>2x</td>
</tr>
<tr>
<td>Raw Capacity (TB)</td>
<td>2x</td>
<td>2x</td>
</tr>
<tr>
<td>Cost</td>
<td>4%</td>
<td>11%</td>
</tr>
</tbody>
</table>
State of SSDs 2007
Compatibility for Laptops and Rugged Environments

• Replacements for low-end hard drives
• Relatively cheap
• Focus on low power, environmental tolerance
• Performance: terrible
 > Devices with 36ms latency (!!!)
• Reliability: awful
 > Accelerated write/erase cycle exhaustion
• Lousy FTL, controllers gave flash SSDs a black eye
State of SSDs 2008
Performance and Reliability for the Enterprise

- Replacements for 15K enterprise drives
- Boutique vendors
- Absolute performance, not price/performance
- Increased complexity logic to accelerate devices
- Decreased observability into devices
State of SSDs 2009
Volume and Scale

- High quality, volume prices
- Intel, Samsung, Toshiba, et al.
- SLC for the enterprise
- MLC for the desktop
- Margin is disappearing
Failings of Flash SSDs

- Constrained by design goal of complete compatibility with hard drives
- Unique properties of flash obscured
- Better ways to interface than SAS/SATA/FC
- Closed solution makes it harder to integrate flash into the storage hierarchy
Interface / Connectivity / Form Factor

- SAS/SATA/FC was convenient
- Fine as a replacement device
- Inefficient and anachronistic
- SSDs will find a better interface
FTL: Good / Bad / Ugly

- SSD controllers present flash as disk to OS
- Don't need to change OS or application
- Not a direct map e.g. “RPM = 1”
- Spare sectors to accelerate writes
- Role of controllers will change
 > More collaboration with higher level software
 > Less complex in some ways
 > Enable broader innovation higher up the stack
 > TBD: what does the SSD do vs. what does the FS do?
Broadly Purposed

• Flash: great for reads, good for writes
• SSDs strain to get both right
• Better path: optimize for a specific use case
• HSP
 > Logzilla: small capacity, write IOPS, rarely read
 > Readzilla: huge capacity, read IOPS, slow writes
• Both devices simpler and cheaper to build than an SSD that aims to solve both
Conclusion

• SSDs gained adoption with hard disk compatibility
• Time to re-evaluate the other side
• Caveats
 > Economics is king
 > Some element of compatibility must be preserved
 > Partial solutions first until broader markets evolve
• Slow transition that *we* can guide
 > Promote compelling uses of flash
 > Work with vendors
 > Vote with your wallet
Thank You!

Adam Leventhal
blogs.sun.com/ahl