The Inculcation of Systems Thinking

Bryan Cantrill
Sun Microsystems
bmc@eng.sun.com
Inculcating Systems Thinking

- There are elements of systems thinking that are likely born, not made...
 > Those with the Myers-Briggs NT temperament (the “Rationals”) seem to predominate
- ...but (as is often the case) an education is necessary to turn aptitude into ability
- More than just teaching particular systems, we must educate *how to think* about systems
- But how do you teach wisdom?
Some Systems Themes

• Some themes seem to run across systems, and across domains:
 > The role of pathology in systems understanding
 > The duality between the abstract and the concrete
 > The expression of system value in terms of the ratio of price to performance

• By teaching these themes we can effect systems thinking

• But we need to expand on the themes to consider how best to teach them...
Systems Pathology

- Sufficiently complicated systems are not necessarily instructive when functional – systems can work by accident
- A pathological system, on the other hand, always has something to teach
- But there is a natural tendency to dismiss the pathological system as incompetence, aberration or an exercise to the reader
- Such systems are often dismissed without completely understanding the failure!
The Pathology Opportunity

- Systems are buildable/understandable because *abstraction* permits subsystems
- But the layering of abstractions can lend a false sense of simplicity...
- In a pathological system, the abstraction layering becomes violated in some way, and the complexity reveals itself
- This complexity is the mechanism of the system – diagnosing pathology presents a unique opportunity to understand it
Diagnosing Pathology

- Diagnosing a pathological system is most straightforward when pathology is *fatal*.
- With fatal pathology, the final state is both *static* and *invalid*.
- One proceeds backwards to find the transition from a valid to an invalid state.
 - Where multiple transitions are possible, data from the final state is used to eliminate possible state transitions from consideration.
 - Becomes challenging when there is insufficient data in the final state to eliminate possibilities.
Non-Fatal Pathologies

- Pathology need not be fatal – a system can be logically correct, but so profoundly suboptimal as to be undesirable.
- Non-fatal failure is often much more challenging to diagnose than fatal failure:
 - The state is both *dynamic* and *valid* – one does not have invalid states, but rather evolving symptoms.
 - Can be very difficult to move from symptoms to underlying cause, especially when pathologies cascade (*Leventhal's Conundrum*: given the hurricane, where is the butterfly?)
Understanding Pathology

- In understanding many failed systems, one's thinking *shifts* to focus on pathology
- When conceiving a new system, one:
 - Considers the edge conditions, where a system's fatal failings lurk
 - Considers the diagnosis of fatal failure, and how to provide the richest possible (if invalid) state
 - Considers the diagnosis of non-fatal failure, and how to provide the most semantically meaningful dynamic instrumentation
 - Develops methodologies to verify a system as it's being developed
Teaching Pathology

- Systems pathology is best understood in synthetic systems of one's own design
- Courses teaching systems should have lab components wherever possible
 > Lab-built systems should be of sufficient complexity to allow students to experience the scope of pathology that exists in real-world systems
 > Students should be provided professional-grade tools; it is critical to know one's tools and their limitations
 > Lab-built systems should be expected to be flawless, and should be automatically verified
The Abstract/Concrete Duality

- *Abstraction* is absolutely essential for understanding and designing systems
- But the development of abstraction can be too powerful a tool – if one loses the concrete, one develops abstractions that no longer correspond to reality
- Mastering this *duality* between the abstract and the concrete is the essence of systems thinking
Maintaining the Duality

- One cannot focus exclusively on either the abstract or the concrete – one needs both.
- To maintain the duality, one must *oscillate* between the abstract and the concrete, using each to reinforce the other:
 - When dealing with the abstract, use the concrete to verify or revise.
 - When dealing with the concrete, use the abstract to motivate and refactor.
- This oscillation requires a limber mind – but it is the essence of systems innovation.
Teaching the Duality

- Education is traditionally very good at the abstract, but the concrete can be more of a challenge...
- ...so systems courses need to pay special attention to the concrete:
 - Systems lectures should present concepts, with in-class demonstrations when possible
 - Systems labs should be sufficiently expansive to incorporate many concrete details
 - Wherever possible, “real-world” examples should be used, e.g. guest speakers describing actual systems
Ratio of Price to Performance

- System performance does not exist in a vacuum; it is inextricably linked to price.
- The ratio of a system's price to its performance is the expression of its value.
- The ratio expresses the relationship of a system with a larger one: an economic system that reflects choices given scarcity.
Defining the Ratio

- Performance and price should both be defined broadly
 > Performance is the work done by the system
 > Price is the explicit \textit{and} implicit cost of the system
- Many systems fail for either poorly defining or ignoring price/performance:
 > Some are lured by highest \textit{absolute} performance
 > Some cling to the \textit{wrong notion} of performance
 > Some overlook substantial \textit{implicit costs}
The Ratio and Innovation

- One can harness the power of the price-to-performance ratio by innovating *in terms* of the ratio
- A system that effects a sufficiently large improvement in price/performance is called a *disrupting innovation*
 > Nearly always happens when less performance is delivered at *much less* cost
 > Has happened often in history – it is the systems embodiment of Schumpeter's “creative destruction”
Teaching the Ratio

• To inculcate a sense of the relationship of price to performance, we must teach – at some level – the economics of systems

• This is perhaps most easily done by looking at the history of technology, which is littered with economic carcasses

• Might make an appropriate “light” senior seminar course (with technical, lab-oriented systems courses as prerequisites)
Recommended Reading/Viewing

- Systems pathology
 - *When Technology Fails* by Neil Schlager
 - *NOVA* circa 1993 on COPA (Panama) 737 crash
 - *Crash Files of the NTSB*, esp. “Disaster on Duffy Street”

- The abstract/concrete duality
 - *The Education of Henry Adams* by Henry Adams
 - *Skunk Works* by Ben Rich

- Importance of price/performance
 - *The Innovator's Dilemma* by Clayton Christensen
 - *Mastering the Dynamics of Innovation* by J. Utterback
 - *The Economist, The Wall Street Journal*
The Inculcation of Systems Thinking

Bryan Cantrill
Sun Microsystems
bmc@eng.sun.com